High-Pressure Synthesis, Crystal Structures, and Properties of ScRhO₃ and $InRhO₃$ Perovskites

Alexei A. Belik,^{*,†} Yoshitaka Matsushita,[‡] Masahiko Tanaka,[‡] and Eiji Takayama-Muromachi[§]

† International Cen[ter](#page-5-0) for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

‡ SPring-8 Office, NIMS, Kohto 1-1-1, Sayo-cho, Hyogo 679-5148, Japan

§ National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

S Supporting Information

[ABSTRACT:](#page-5-0) ScRhO₃ and InRhO₃ perovskites were synthesized at a high pressure of 6 GPa and a high temperature of 1500 K. Crystal structures of $ScRhO₃$ and $InRhO₃$ were studied with synchrotron X-ray powder diffraction at 293 and 134 K. ScRhO₃ and InRhO₃ have a rarely observed monoclinic superstructure of the $GdFeO₃-type$ structure (space group $P2_1/n$, $a = 7.45660$ Å, $b = 7.43524$ Å, $c = 7.52191$ Å, and $\beta = 93.2930^\circ$ for ScRhO₃ and $a = 7.59020 \text{ Å}$, $b = 7.58377 \text{ Å}$, $c = 7.59010 \text{ Å}$, and $\beta = 91.4154^{\circ}$ for InRhO₃ at 293 K). InRhO₃ has pseudo-orthorhombic lattice parameters of $a = 10.8658 \text{ Å}, b = 7.5837 \text{ Å}, \text{and}$ $c = 10.6006$ Å. ScRhO₃ and InRhO₃ are nonmagnetic, and no phase transitions were detected between 2 and 873 K. Crystallographic trends and distortions of $ScRhO₃$, InRhO₃, and RRhO₃ (R = rare earths, Y, and Bi) are discussed.

1. INTRODUCTION

ABO₃ perovskites form a very large and important class of compounds and materials.¹ The stability and distortions of perovskites are often understood using the Goldschmidt tolerance factor,² t = $(r_A + r_O)/[2^{1/2}(r_B + r_O)]$ $(r_A + r_O)/[2^{1/2}(r_B + r_O)]$ $(r_A + r_O)/[2^{1/2}(r_B + r_O)]$, where r_A , r_B , and r_O are the ionic radii of the A, B, and oxygen ions, respectively, in [p](#page-6-0)erovskite ABO_3 . The perovskite structure is stable within the limits of t between 0.77 and 0.99 if the A and B ionic radii are based on octahedral coordination.³ Therefore, the A site of perovskites is usually occupied by large cations such as rare earth, Bi, and alkali earth cations (wh[en](#page-6-0) the B site contains transition metals with $r_B = 0.5$ to 0.7 Å).⁴ With smaller cations at the A site, the perovskite structure becomes unstable (at ambient pre[s](#page-6-0)sure), and other structural types are formed, 5 for example, the bixbyite structure $(ScFeO₃)⁶₆$ and the hexagonal YMnO₃-type structure (h-ScMnO₃^{7,8} and h[-](#page-6-0) $InMnO₃$.

There has been increased interest in recent ye[ars](#page-6-0) in highly distorted [o](#page-6-0)r exotic perovskites in order to find new physical properties and effects and unusual behavior.¹⁰ One way to obtain new exotic perovskites is to introduce small cations (such as Sc^{3+} , In³⁺, Mn²⁺, and others) into the [A](#page-6-0) site. This can be done using the high-pressure, high-temperature preparation method; this method gave, for example, $SCVO_3$ (8 GPa),¹¹ ScMnO₃ (12.5 GPa),¹² (In_{1-x}Mn_x)MnO₃ (¹/₉ $\leq x \leq$ ¹/₃) (6 GPa),¹³ MnVO₃ (4.5–8 GPa),^{14,15} Mn₂FeSbO₆ (6 GPa),¹⁶ a[nd](#page-6-0) even Mn_2O_3 (~20 [GP](#page-6-0)a)¹⁷ perovskites and perovskite-related LiNbO₃-type compounds, $(\text{In}_{1-x}M_x)M\text{O}_3$ $(M = \text{Mn}_{0.5}\text{Fe}_{0.5})$ (6) GPa ¹⁸ and Mn₂FeNbO₆ (7 GPa).¹⁹ InCrO₃ (6.5 GPa),

InRhO₃ (6.5 GPa),²⁰ and ScCrO₃ (4.5 GPa)²¹ perovskites were first prepared long ago. However, only the lattice parameters of InRhO₃ were repo[rte](#page-6-0)d ($a = 5.435 \text{ Å}$, $b = 7.586 \text{ Å}$ $b = 7.586 \text{ Å}$ $b = 7.586 \text{ Å}$, and $c = 5.301$ Å),²⁰ and no information about its real crystal structure and properties is known.

[In](#page-6-0) this work, we prepared $InRhO₃$ and a new perovskite $ScRhO₃$ and investigated their structural and magnetic properties. Both $ScRhO₃$ and $InRhO₃$ have a rare monoclinic superstructure of the $GdFeO₃$ -type with lattice parameters of a = 7.45660 Å, $b = 7.43524$ Å, $c = 7.52191$ Å, and $\beta =$ 93.2930(1)^o (for ScRhO₃) and space group $P2₁/n$, and they are isostructural with the 1:3 B-site-ordered $Sr(Na_{0.25}Sb_{0.75})O_3$.²² In $RhO₃$ has pseudo-orthorhombic lattice parameters. Therefore, their structures are different from the orthorhom[bic](#page-6-0) GdFeO₃-type structures of RRhO₃ perovskites (R represents rare-earth cations, Y, and Bi).^{23–33} Both InRhO₃ and ScRhO₃ are nonmagnetic, similar to the RRhO₃ perovskites ($R = Y$, La, Sm, Lu, and Bi). $30,33$

2. EXPERIME[NTAL](#page-6-0) SECTION

 $ScRhO₃$ and InRh $O₃$ were prepared from stoichiometric mixtures of In_2O_3 (99.99%), Sc_2O_3 (99.9%), and Rh_2O_3 (99.9%). The mixtures (corresponding to the total weight of about 0.45 g for each compound) were placed in Au capsules and treated at 6 GPa in a belt-type high-pressure apparatus at 1500 K for 2 h. (The heating rate to the desired temperature was 10 min.) After heat treatment, the samples were quenched to room temperature (RT), and the pressure

Received: July 9, 2013 Published: September 30, 2013

Table 1. Structural Parameters of $ScRhO₃$ at Room Temperature^a

The occupation factor for all sites is unity. Space group $P2_1/n$ (No. 14; unique axis b, cell choice 2). $Z = 8$, $a = 7.45660(1)$ Å, $b = 7.43524(1)$ Å, $c =$ 7.52191(1) Å, $\beta = 93.2930(1)$ °, and $V = 416.3385(9)$ Å³. $R_{wp} = 4.61\%$, $R_p = 3.19\%$, $R_B = 1.19\%$, and $R_F = 0.80\%$. $\rho_{cal} = 6.249$ g/cm³ .

was slowly released. The resultant samples were dark-brown dense pellets.

X-ray powder diffraction (XRPD) data of $ScRhO₃$ and $InRhO₃$ were collected at RT on a Rigaku Ultima III diffractometer using Cu K α radiation (2 θ range of 10−100°, step width of 0.02°, and counting time of 10 s/step). Synchrotron XRPD data were measured at RT and 134 K on a large Debye−Scherrer camera at the BL15XU beamline of SPring-8.³⁴ The data were collected between 2 and 60° at a 0.003° interval in 2θ. The incident beam was monochromatized at 0.65297 Å. The sam[pl](#page-6-0)es were packed into Lindenmann glass capillaries (inner diameter 0.1 mm), which were rotated during the measurement. The absorption coefficient was measured. The Rietveld analysis was performed with RIETAN-2000.³⁵ For identified impurities, we refined only scale factors and lattice parameters, fixing their structural parameters.

Magnetic susceptibilities ($\chi = M/H$ $\chi = M/H$ $\chi = M/H$) of ScRhO₃ and InRhO₃ were measured on a SQUID magnetometer (Quantum Design, MPMS) between 2 and 300 K in different applied fields under both zero-fieldcooled (ZFC) and field-cooled on cooling (FCC) conditions. Isothermal magnetization measurements were performed between 0 and 70 kOe at 5 and 300 K. All of the magnetization data were corrected for contributions from diamagnetic sample holders (obtained in separate experiments) and core diamagnetism $(\chi_{di}$ 10^{-6} = -12.6 (\overline{O}^{2-}), -22 (Rh³⁺), -6 (Sc³⁺), and -19 (In³⁺) cm³/ mol)³⁶ because negative total magnetization was observed at higher temperatures. The specific heat, $C_p(T)$, was measured from 300 to 2 K in a [z](#page-6-0)ero magnetic field by a pulse relaxation method using a commercial calorimeter (Quantum Design PPMS).

Differential scanning calorimetry (DSC) curves of ScRhO₃ (powder) and $InRhO₃$ (powder) were recorded on a Mettler Toledo DSC1 STAR^e system at a heating/cooling rate of 10 K/min between 293 and 873 K in open aluminum capsules. Two runs were performed to check the reproducibility. The first heating DSC curve showed sharp anomalies at 361 K in ScRhO₃ and at 406 K in InRhO₃. However, no anomalies were found on the first cooling curve and the second heating−cooling curves. XRPD measurements after the DSC experiments showed that the perovskite phases of ScRhO₃ and InRhO₃ remained unchanged. Therefore, the DSC anomalies on the first heating curve most probably originated from irreversible transformations in impurities or annealing effects.

3. RESULTS AND DISCUSSION

All reflections on synchrotron XRPD patterns with intensities above 1% were indexed using $TREOR³⁷$ in an orthorhombic system for InRhO₃ ($a = 5.4329$ Å, $b = 7.5837$ Å, and $c = 5.3003$ Å) and a monoclinic system for ScRhO₃ ($a = 5.4457$ Å, $b =$ 7.4353 Å, $c = 5.1414$ Å, and $\beta = 90.5005^{\circ}$). The orthorhombic lattice parameters of $InRhO₃$ were in very good agreement with the reported values.²⁰ The observed reflection conditions of $k +$

 $l = 2n$ for 0kl and $h = 2n$ for hk0 in InRhO₃ afforded two possible space groups, centrosymmetric Pnma (No. 62) and noncentrosymmetric p_{n2_1a} (No. 33).³⁸ The structure parameters of LuRhO_3^{33} in space group *Pnma* were used as the initial ones for the refinement of InRhO3. [A](#page-6-0)ttempts to refine the structure of InR[hO](#page-6-0)₃ in space group $Pn2₁a$ did not improve the fitting results. The observed reflection conditions of $k = 2n$ for 0k0 in $ScRhO₃$ afforded two possible space groups, centrosymmetric $P2_1/m$ (No. 11) and noncentrosymmetric $P2_1$ (No. 4).³⁸ The structure parameters of Ca₂MnSbO₆³⁹ in space group $P2_1/m$ were used as the initial ones for the refinement [of](#page-6-0) $ScRhO₃$. Attempts to [re](#page-6-0)fine the structure of ScRhO₃ in space group $P2_1$ did not improve the fitting results. Note that the initial substructure model for $ScRhO₃$ could also be deduced from the obtained structural parameters of $InRhO₃$ in *Pnma* by a group–subgroup transformation of *Pnma* > $P2₁/$ m.

Good fits and reliable structural parameters were obtained in space group *Pnma* for InRhO₃ ($R_{wp} = 6.69\%$, $R_p = 4.71\%$, $R_p =$ 2.37%, and $R_F = 1.33\%$) and in space group $P2_1/m$ for ScRhO₃ $(R_{wp} = 5.92\%, R_p = 4.14\%, R_B = 3.63\%, \text{ and } R_F = 2.13\%)$ (Supporting Information). However, both samples contained many weak additional reflections. Some additional reflections in InRh O_3 were found to originate from InOOH and Rh i[mpurities.](#page-5-0) [Remaining](#page-5-0) [add](#page-5-0)itional reflections in $InRhO₃$ (except for three extremely weak reflections with $d = 2.880, 2.822,$ and 1.995 Å) could be indexed in orthorhombic symmetry with the $2a \times b \times 2c$ superstructure. Many additional reflections in ScRhO₃ could be indexed in monoclinic symmetry with the \pm $(a + c) \times b \times (a - c)$ superstructure. However, some unindexed weak reflections remained in $ScRhO₃$; they could not be indexed in any reasonable superstructure. Therefore, they most probably originated from unknown impurities.

The $\pm(a + c) \times b \times (a - c)$ superstructure of the $P2_1/m$ substructure of ScRhO₃ can result in space groups $P2_1/m$ and $P2_1/n$ (the substructures and superstructures have group– subgroup relations with each other). Attempts to apply the $P2_1/m$ superstructure resulted in poor fitting of some superstructure reflections (actually two models with different origin shifts were checked). However, superstructure reflections could be perfectly fit with the $P2_1/n$ superstructure model. Therefore, the crystal structure of $ScRhO₃$ was refined in the $P2_1/n$ superstructure model. Note that there is another $P2_1/n$ superstructure model (with a different origin shift) where all sites are in general 4e positions. However, that model gave

larger R values and poor fitting of some superstructure reflections (Supporting Information).

Our attempts to construct an orthorhombic 2a \times b \times 2c superstructure model for InRhO₃ [with $a = 10.8658$ Å, $b =$ 7.5837 Å, and $c = 10.6006$ Å and maximum space group Bmam (standard setting is Cmma) or Bmmm (standard setting is Cmmm) based on the observed reflection conditions] failed. Attempts to solve the structure of $InRhO₃$ by direct methods with EXPO⁴⁰ in orthorhombic superstructures also failed. However, the structure of $InRhO₃$ could be solved with EXPO in space gr[ou](#page-6-0)p $P2_1/n$ (where all Rh sites were in special centrosymmetric positions). Therefore, we used the obtained structural parameters of ScRhO₃ in space group $P2_1/n$ as the initial ones for the refinement of $InRhO₃$. All superstructure reflections of InRhO₃ could be perfectly fit with the $P2_1/n$ superstructure model. We note that the same situation was observed in $Sr(Na_{0.25}Sb_{0.75})O_3^{22}$ where a substructure model was the Pnma GdFeO₃-type model (with $2^{1/2}a_p \times 2a_p \times 2^{1/2}a_p$ lattice parameters, where a_n [is](#page-6-0) the parameter of the cubic perovskite subcell) and a superstructure model had $P2_1/n$ symmetry and $2a_p \times 2a_p \times 2a_p$ lattice parameters instead of orthorhombic symmetry and $2(2^{1/2})a_p \times 2a_p \times 2(2^{1/2})a_p$ lattice parematers.

The refined structural parameters, R values, selected bond lengths, bond angles, and bond-valence sums $(BVS)^{41}$ of ScRhO₃ and InRhO₃ are listed in Tables 1–4. For InRhO₃, Table 2 gives structure parameters with fixed lattice para[met](#page-6-0)ers

T[a](#page-1-0)ble 2. Structural Parameters of $InRhO₃$ at Room Temperature^a

	Wyckoff				
site	position	\mathcal{X}	\mathcal{Y}	\boldsymbol{z}	$B(\AA^2)$
In1	4e	0.2195(3)	0.2438(5)	0.7709(3)	0.26(3)
In2	4e	0.2298(3)	0.2341(2)	0.2780(4)	0.61(3)
Rh1	2a	0	0	0	0.37(7)
Rh ₂	2 _b	$\mathbf{0}$	0	0.5	0.28(5)
Rh ₃	2c	0.5	Ω	0.5	0.30(6)
Rh ₄	2d	0.5	0	Ω	0.29(5)
O ₁	4e	0.2568(14)	0.4693(14)	0.5944(19)	0.51(4)
O ₂	4e	0.6005(18)	0.5505(15)	0.7479(13)	$= B(O1)$
O ₃	4e	0.1000(19)	0.2563(12)	0.0195(16)	$= B(O1)$
O ₄	4e	0.0377(18)	0.5886(18)	0.2483(14)	$= B(O1)$
O ₅	4e	0.4647(16)	0.2476(16)	0.8943(19)	$= B(O1)$
O ₆	4e	0.7587(14)	0.4025(16)	0.0353(18)	$= B(O1)$

^aThe occupation factor for all sites is unity. Space group $P2_1/n$ (No. 14; unique axis b, cell choice 2). $Z = 8$, $a = 7.59020$ Å, $b = 7.58377$ Å, c = 7.59010 Å, β = 91.4154°, and V = 436.770 Å³. R_{wp} = 4.62%, R_p = 3.35%, $R_B = 0.91\%$, and $R_F = 0.70\%$. The weight fraction of Rh is 0.4%, and the weight fraction of InOOH is 0.1%. $\rho_{\text{cal}} = 8.082 \text{ g/cm}^3$. .

(obtained from the Pnma lattice parameters). This model gave more reliable Rh−O bond lengths. A model with the refined lattice parameters is given in the Supporting Information. Superstructure reflections were very weak in InRhO₃ (<0.5%, Supporting Information), probabl[y originating from the](#page-5-0) ordering of oxygen atoms. $InRhO₃$ has heavy In and Rh [atoms \(in comparison to](#page-5-0) O atoms) and pseudo-orthorhombic lattice parameters. These facts could be the origin of less accurate localization of some oxygen atoms. In ScRhO3, all Sc− O and Rh−O bond lengths were very reasonable, and BVS(Sc) and $BVS(Rh)$ values were close to $+3$. Experimental, calculated, and difference synchrotron XRPD patterns are shown in Figure 1. Figure 2 depicts the crystal structure of $ScRhO₃$.

Table 3. Selected Bond Lengths $(l (Å))$, Bond Angles (deg) , and Bond Valence Sums (BVS) in ScRhO $_3^{\alpha}$

 ${}^{\alpha}$ BVS = $\Sigma_{i=1}^{N} \nu_i$ = exp[($R_0 - l_i$)/B], N is the coordination number, B = 0.37, R_0 (In^{3+}) = 1.902, $R_0(\mathrm{Sc}^{3+})$ = 1.849, and $R_0(\mathrm{Rh}^{3+})$ = 1.791.⁴¹

Refinements of occupation factors (g) of cations together with all other structural parameters (listed in Tables 1 and 2), profile parameters, zero-shift parameters, and background parameters [g](#page-1-0)ave the following results. For ScRhO₃, $g(Sc1)$ = 1.016(5) and $g(Sc2) = 0.996(5)$ with fixed $g(Rh1) = g(Rh2) =$ $g(Rh3) = g(Rh4) = 1$, and $g(Rh1) = 0.991(5)$, $g(Rh2) =$ 0.991(5), $g(Rh3) = 0.986(5)$, and $g(Rh4) = 0.991(5)$ with fixed $g(Sc1) = g(Sc2) = 1$. For InRhO₃, $g(In1) = 1.004(3)$ and $g(\text{In2}) = 0.996(3)$ with fixed $g(\text{Rh1}) = g(\text{Rh2}) = g(\text{Rh3}) =$ $g(Rh4) = 1$, and $g(Rh1) = 0.984(8)$, $g(Rh2) = 1.019(8)$, $g(Rh3) = 0.992(8)$, and $g(Rh4) = 1.008(8)$ with fixed $g(In1) =$

Figure 1. Portions ($2\theta = 6-30^{\circ}$) of experimental (black crosses), calculated (red line), and difference (blue line) synchrotron XRPD patterns of (a) $ScRhO₃$ and (b) InRhO₃. The bars show possible Bragg reflection positions for the perovskite phases (black bars) and InOOH (green bars) and Rh (blue bars) impurities in $InRhO₃$. Insets give enlarged images ($2\theta = 20-28^\circ$).

Figure 2. Crystal structure of $ScRhO₃$ along (a) the a axis and (b) the b axis.

 $g($ In2) = 1. These results showed that the Sc/Rh ratio in ScRhO₃ and the In/Rh ratio in InRhO₃ were very close to 1:1. Figure 3 shows the lattice parameters as a function of ionic radius (for 8-fold coordination)⁴ for all RRhO₃ compounds (R

Figure 3. Lattice parameters and unit cell volume of RRhO₃ compounds ($R = Sc$, In, Y_i^{26} rare earths,^{23,25–27,31,33} and Bi³³) as a function of the ionic radius (in 8-fold coordination).⁴ Arrows show the i[d](#page-6-0)eal lattice parameters for $InRhO₃$ and $BiRhO₃$ [\(or](#page-6-0) expected lattice parameters from the monotonic trends in the fami[ly](#page-6-0)).

= Sc, In, Y_1^{26} rare earths,^{23,25–27,31,33} and Bi³³). We used the lattice parameters of the substructure models for this figure. The lattice [pa](#page-6-0)rameters an[d un](#page-6-0)i[t cell v](#page-6-0)olume [of](#page-6-0) $ScRhO₃$ follow the general monotonic behavior observed in $RRhO₃$ compounds ($R = Y$ and La–Lu), but both InRhO₃ and BiRhO₃ exhibit a strong deviation from monotonic behavior. It is interesting that all lattice parameters and unit cell volumes for InRh $O₃$ and BiRh $O₃$ show opposite deviations from the expected values (which are based on the ionic radius). The peculiar behavior of both InRhO₃ and BiRhO₃ can be explained by the significant hybridization of In $-Q^{42,43}$ and Bi $-Q$ bonds, resulting in more covalent bonds in comparison to $R-O$ ($R = Y$ and La−Lu) bonds. The same be[havio](#page-6-0)r of the lattice parameters was observed in ScCrO₃, InCrO₃, and RCrO₃ (R = Y and La−Lu) (Supporting Information).

The substructure of InRhO₃ has an orthorhombic $GdFeO₃$ type structure simi[lar to that of the](#page-5-0) $RRhO₃$ perovskites (R is a rare earth cation, Y, or Bi).^{23–33} The substructure of ScRhO₃

has a small monoclinic distortion of the $GdFeO₃$ -type structure; this $P2_1/m$ distortion was observed in doped CaMnO₃-based manganites, $(Ca_{0,85}La_{0.15})MnO_3^{44}$ $(Ca_{0.85}Tb_{0.15})MnO_3^{45}$ $(Ca_{0,3}Nd_{0,7})MnO_3^{46,47}$ CaMn_{1-x}W_xO₃⁴⁸ and Ca₂MnSbO₆.³⁹ The Pnma-to-P2₁/m transition in C[aM](#page-6-0)nO₃-based manganites [is](#page-6-0) often observed a[t lo](#page-6-0)w temperatures [a](#page-6-0)nd associated wi[th](#page-6-0) magnetic and charge ordering. We emphasize that the monoclinic angle in the substructure of $ScRhO₃$ is between the a (= $2^{1/2}a_p$) and c (= $2^{1/2}a_p$) lattice parameters. It is different from monoclinic angles between the $2^{1/2}a_p$ and $2a_p$ lattice parameters observed in B-site rock-salt-ordered perovskites.16,49,50

The superstructure found in both $ScRhO₃$ and $InRhO₃$ was obser[ved on](#page-6-0)ly, to the best of our knowledge, in 1:3 B-siteordered $Sr(Na_{0.25}Sb_{0.75})O_3$.²² The tilt angles for each RhO₆ octahedron in $ScRhO₃$ and $InRhO₃$ can be calculated with equations given in ref 22, [and](#page-6-0) the results can be found in the Supporting Information. However, for the purpose of comparison, we comp[are](#page-6-0) tilt angles of $ScRhO₃$ and $InRhO₃$ [calculated for the substruc](#page-5-0)ture models with those of $RRhO₃$ perovskites (R is a rare earth cation, Y, or Bi).²³⁻³³ The tilt system of Pnma is $a^+b^-b^-$ (ref 51) according to Glazer's not[a](#page-6-0)tion.⁵² The tilt system of $P2_1/m$ is similar, $a^+b^-c^{-51}$ The only difference is that the rotation [alo](#page-6-0)ng the c axis should not be the s[am](#page-6-0)e as the rotation along the b axis. The tilt sy[ste](#page-6-0)m of the $P2_1/n$ superstructure cannot be written in Glazer's notation, but the octahedral tilt system should be basically the same as that of the substructures.²² A weak superstructure could appear from the independent tilting of octahedra in different layers (Figure 2b).

The octahedral tilt angles in *Pnma* can be estimated from the atomic [co](#page-3-0)ordinates of the O2 atom. We used the formulas for the tilt angles as defined in ref 53: in-phase tilt angle ϕ_{O2} = $arctan(1 + 2x_{O2} - 2z_{O2})$ and out-of-phase tilt angle φ_{O2} = $arctan(2^{5/2}y_{O2})$ (for our coordina[tes](#page-6-0) in space group *Pnma*). The out-of-phase tilt angle can also be calculated from the atomic coordinates of the O1 atom: φ_{01} = arctan(2^{3/2}z₀₁).⁵⁴ A tilt angle can be calculated from the lattice parameters, $\phi_{\text{lattice}} =$ $arccos(2^{1/2}c^2/(ab))$.⁵⁵ Figure 4 shows different tilt an[gle](#page-6-0)s as a function of ionic radius (for 8-fold coordination) 4 for all RRhO₃ compound[s \(](#page-6-0) $R = Sc$, In, Y_1^{26} rare earths,^{23,25–27,31,33} [a](#page-6-0)nd Bi³³). In-phase tilt angle ϕ_{O2} monotonically increases with

All tilt angles of $ScRhO₃$ were larger that those of $InRhO₃$ (Figure 4 and Sup[po](#page-3-0)rting Information). This is an expected result because ScRhO₃ with smaller Sc^{3+} ions at the A site should have la[rger distortions. Howeve](#page-5-0)r, the difference in tilt angles is not very significant, and the oxygen coordination of Sc^{3+} and In³⁺ ions is similar in ScRhO₃ and InRhO₃ with six short bond lengths and two much longer bond lengths (Tables 3 and 4).

decreasing the R^{3+} ionic radius (except for BiRhO₃). Out-ofphase tilt angles φ_{O2} and φ_{O1} are close to each other (again except for $BiRhO₃$) with an anomaly from the monotonic behavior on InRhO₃. Tilt angle ϕ _{lattice} shows strong anomalies

parameters (Figure 3).

The Goldschmidt tolerance factor of $ScRhO₃$ is 0.735, and [th](#page-2-0)at o[f](#page-2-0) InRhO₃ is 0.753 (with the ionic radius for 6-fold coordination). Therefore, ScRhO₃ and InRhO₃ should not be stable at ambient pressure.³ The high-pressure, high-temperature method is needed to stabilize them under ambient conditions. So far, $SCVO_3$,^{[1](#page-6-0)1} $SCCO_3$,^{10,21} $SCMnO_3$,¹² $ScRhO_3$, InCrO₃,^{10,20} (In_{1-x}Mn_x)MnO₃¹³ and InRhO₃ simple perovskites could be prepared b[y th](#page-6-0)e high-[pressu](#page-6-0)re, high-t[em](#page-6-0)perature method. $ScVO₃$, $ScCrO₃$, and $InCrO₃$ $InCrO₃$ crystallize in the Pnma GdFeO₃-type structure $(2^{1/2}a_{\rm p} \times 2a_{\rm p} \times 2^{1/2}a_{\rm p})$ at RT with one crystallographic site for V^{3+} and Cr^{3+} . ScMnO₃ crystallizes in the B-site-ordered $GdFeO₃$ -type structure with space group $P2_1/n$ $(2^{1/2}a_p \times 2^{1/2}a_p \times 2a_p)^{12}$ similar to $(\text{In}_{1-x}\text{Mn}_x)\text{MnO}_3$ $\left(\frac{1}{9} \leq x \leq \frac{1}{1/3}\right)^{13}$ with two crystallographic Mn sites having quite different Jahn-Teller di[sto](#page-6-0)rtions. ScRhO₃ and InRhO₃ have the most [co](#page-6-0)mplicated superstructure of the original GdFeO₃-type structure with space group $P2_1/n$ ($2a_n \times 2a_n \times$ $(2a_p)$ among ScMO₃ and InMO₃ compounds. For ScRhO₃, small Sc³⁺ ions at the A site and strong bending of the $-RhO_6$ − RhO₆− chains (with the average $(Rh-O-Rh)$ bond angle of 132.2°) should contribute to its unusual structural distortion. Bond angles are larger in ScVO₃ ($\langle V-O-V \rangle = 136.5^{\circ}$),¹¹ ScCrO₃ (\langle Cr−O−Cr \rangle = 137.9°),¹⁰ and ScMnO₃ (\langle Mn−O− Mn) = 135.0°).¹² In-phase tilt angle ϕ_{O2} is the largest [in](#page-6-0) $ScRhO₃$ and InRhO₃ among k[no](#page-6-0)wn $ScMO₃$ and InMO₃ compounds (Su[ppo](#page-6-0)rting Information).

Synchrotron XRPD data at 134 K ($a = 7.45257(1)$ Å, $b =$ 7.43103(1) Å, $c = 7.51929(1)$ Å, and $\beta = 93.2603(1)^\circ$ for ScRhO₃; $a = 5.42927(2)$ Å, $b = 7.57701(2)$ Å, and $c =$ 5.29713(1) Å in *Pnma* and $a = 7.58254(3)$ Å, $b = 7.57701(1)$ Å, c = 7.58786(1) Å, and β = 91.4115(1)^o in P2₁/n for InRh O_3) showed that the crystal symmetry of ScRh O_3 and InRhO₃ did not change. Specific heat measurements between 2 and 300 K (Figure 5) and DSC measurements between 293 and 873 K also showed no anomalies. All of these facts indicate the absence of low[-te](#page-5-0)mperature phase transitions and hightemperature phase transitions up to 873 K in $ScRhO₃$ and In $RhO₃$. We note that specific heat measurements by the pulse relaxation method sometimes cannot detect structural phase transitions, for example, in $\mathrm{PbPd_{2}O_{4}}^{56}$

The specific heat between 5 and 19 K for $ScRhO₃$ and 3 and 19 K for InRhO₃ could be fit by the e[qu](#page-6-0)ation (inset of Figure 5)

$$
C_p(T) = \gamma T + \beta_1 T^3 + \beta_2 T^5 \tag{1}
$$

where the first term is associated with the electronic contribution and the second and third terms describe the lattice contribution. The fitted parameters were $\gamma = 0.52(4)$ mJ/mol K², $\beta_1 = 0.0589(5)$ mJ/mol K⁴, and $\beta_2 = 2.88(14)$ ×

Figure 4. Different tilt angles as a function of the ionic radius (in 8 fold coordination) in $RRhO₃$ compounds $(R = Sc, In, Y, rare$ earths,^{31,33} and Bi³³). See the text for definitions of the tilt angles.^{53–55}

Figure 5. Specific heat data of ScRhO₃ (black circles) and $InRhO₃$ (blue squares) at zero magnetic field plotted as C_p/T vs T (lines are drawn for eye). The inset gives the C_p/T vs T^2 curves (symbols) with the fitting results by eq 1 (lines).

 10^{-5} mJ/mol K⁶ for S[cR](#page-4-0)hO₃ and $\gamma = 0.387(15)$ mJ/mol K², β_1 = 0.0778(3) mJ/mol K⁴, and $\beta_2 = 1.107(8) \times 10^{-4}$ mJ/mol K⁶ for InRhO₃. The existence of the γT term with very small values of the γ coefficient could originate from the presence of impurities (such as metallic Rh in InRhO₃). The values of β_1 gave Debye temperatures, $\Theta_{\rm D} = (234Nk_{\rm B}/\beta_1)^{1/3}$ (N is Avogadro's number and k_B is Boltzmann's constant), of 320 K for ScRhO₃ and 292 K for InRhO₃, which are comparable to the Debye temperatures of other perovskites: BiRhO₃ ($\Theta_{\rm D} \approx$ 236 K),³³ LuRhO₃ ($\Theta_{\rm D} \approx 271$ K),³³ and SrVO₃ ($\Theta_{\rm D} \approx 322$ K).⁵⁷

Figur[e 6](#page-6-0) shows the χ [ve](#page-6-0)rsus T curves of ScRhO₃ and InRhO₃ at [50](#page-6-0) kOe and M versus H curves at 5 and 300 K. There was basically no difference between the ZFC and FCC curves. No anomalies were observed on the χ versus T curves, and the curves could be fit with the equation

$$
\chi(T) = \chi_0 + \frac{0.125\mu_{\text{eff}}^2}{T - \theta} \tag{2}
$$

where χ_0 is a temperature-independent term, μ_{eff} is the effective magnetic moment in the Bohr magneton μ_B , and θ is the Curie–Weiss temperature. The fitting parameters were χ_0 = 6.48(9) × 10⁻⁵ cm³/mol, $\mu_{\text{eff}} = 0.173(1) \mu_{\text{B}}/f.u.,$ and $\theta =$ $-5.4(1)$ K for ScRhO₃ and $\chi_0 = 5.64(9) \times 10^{-5}$ cm³/mol, $\mu_{eff} =$ 0.155(2) μ_B /f.u., and $\theta = -7.8(3)$ K for InRhO₃. Similar effective magnetic moments were observed in $RRhO₃$ ($R = La$, Lu, and Bi). $30,33$ The small effective magnetic moments suggest that the weak magnetism of $ScRhO₃$ and $InRhO₃$ comes from traces of [param](#page-6-0)agnetic impurities or defects. $ScRhO₃$ and In $RhO₃$ are nonmagnetic, and this is in agreement with the nonmagnetic low-spin state of Rh³⁺ ions (t^{δ}_{2g}) .

In conclusion, we prepared $InRhO₃$ and new perovskite ScRhO₃ and investigated their structural and magnetic properties. Both InRhO₃ and ScRhO₃ are nonmagnetic similar to the RRhO₃ perovskites ($R = Y$, La, Sm, Lu, and Bi),^{30,33} and they show no phase transitions between 2 and 873 K. From this point of view, they are not very interesting in comp[arison](#page-6-0) to similar compounds $ScMO₃$ and $InMO₃$ containing other transition metals. However, they have a rare superstructure of the GdFeO₃-type with space group $P2_1/n$ and lattice parameters $2a_p \times 2a_p \times 2a_p$. Therefore, exotic perovskites with small cations at the A site continue to provide interesting structural or physical properties.

Figure 6. (Top) χ vs T curves of ScRhO₃ (black circles) and InRhO₃ (blue squares) at 50 kOe in the field-cooled regime on cooling. Lines show fitting results with eq 2. (Bottom) M vs H curves for ScRhO₃ at 5 K (black circles) and 300 K (white circles, right- and left-hand axes) and for InRhO₃ at 5 K (blue squares). Lines are drawn to guide the eye.

■ ASSOCIATED CONTENT

6 Supporting Information

Structural parameters of $ScRhO₃$ and $InRhO₃$ in different structural models, fitting results, laboratory X-ray powder diffraction patterns, additional structural figures, DSC curves, tilt angle calculations, lattice parameters, and unit cell volumes of $RCrO₃$ $(R = Sc, In, Y, and La–Lu)$ compounds. This material is available free of charge via the Internet at http:// pubs.acs.org.

■ AUTHOR INFORMATION

[Correspond](http://pubs.acs.org)ing Author

*E-mail: alexei.belik@nims.go.jp.

Notes

The auth[ors declare no competi](mailto:alexei.belik@nims.go.jp)ng financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the World Premier International Research Center Initiative (WPI Initiative, MEXT, Japan), the Japan Society for the Promotion of Science (JSPS) through its

Inorganic Chemistry Article

Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program), and Grants-in-Aid for Scientific Research (22246083 and 21540330) from JSPS, Japan. The synchrotron radiation experiments were performed at SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (proposal numbers 2011B4512 and 2012A4507). We thank Dr. A. M. Abakumov for consultations related to superstructures in perovskites.

■ REFERENCES

(1) Mitchell, R. H. Perovskites: Modern and Ancient; Almaz Press: Thunder Bay, Ontario, Canada, 2002.

(2) Goldschmidt, V. M. Naturwissenschaften 1926, 21, 477.

(3) Eitel, R. E.; Randall, C. A.; Shrout, T. R.; Rehrig, P. W.; Hackenberger, W.; Park, S. E. Jpn. J. Appl. Phys. Part 1 2001, 40, 5999.

(4) Shannon, R. D. Acta Crystallogr., Sect. A 1976, 32, 751.

(5) Giaquinta, D. M.; zur Loye, H.-C. Chem. Mater. 1994, 6, 365.

- (6) Breard, Y.; Fjellvag, H.; Hauback, B. Solid State Commun. 2011, 151, 223.
- (7) Bieringer, M.; Greedan, J. E. J. Solid State Chem. 1999, 143, 132.

(8) Uusi-Esko, K.; Malm, J.; Imamura, N.; Yamauchi, H.; Karppinen, M. Mater. Chem. Phys. 2008, 112, 1029.

(9) Yu, T.; Gao, P.; Wu, T.; Tyson, T. A.; Lalancette, R. Appl. Phys. Lett. 2013, 102, 172901.

- (10) Belik, A. A.; Matsushita, Y.; Tanaka, M.; Takayama-Muromachi, E. Chem. Mater. 2012, 24, 2197.
- (11) Castillo-Martinez, E.; Bieringer, M.; Shafi, S. P.; Cranswick, L. M. D.; Alario-Franco, M. A. J. Am. Chem. Soc. 2011, 133, 8552.
- (12) Chen, H. Y.; Yu, T.; Gao, P.; Bai, J. M.; Tao, J.; Tyson, T. A.; Wang, L.; Lalancette, R. Inorg. Chem. 2013, 52, 9692.
- (13) Belik, A. A.; Matsushita, Y.; Tanaka, M.; Takayama-Muromachi, E. Angew. Chem., Int. Ed. 2010, 49, 7723.

(14) Syono, Y.; Akimoto, S. I.; Endoh, Y. J. Phys. Chem. Solids 1971, 32, 243.

(15) Markkula, M.; Arevalo-Lopez, A. M.; Kusmartseva, A.; Rodgers, J. A.; Ritter, C.; Wu, H.; Attfield, J. P. Phys. Rev. B 2011, 84, 094450.

(16) Mathieu, R.; Ivanov, S. A.; Solovyev, I. V.; Bazuev, G. V.; Kumar, P. A.; Lazor, P.; Nordblad, P. Phys. Rev. B 2013, 87, 014408.

(17) Ovsyannikov, S. V.; Abakumov, A. M.; Tsirlin, A. A.; Schnelle,

W.; Egoavil, R.; Verbeeck, J.; Van Tendeloo, G.; Glazyrin, K. V.;

- Hanfland, M.; Dubrovinsky, L. Angew. Chem., Int. Ed. 2013, 52, 1494. (18) Belik, A. A.; Furubayashi, T.; Yusa, H.; Takayama-Muromachi,
- E. J. Am. Chem. Soc. 2011, 133, 9405. (19) Li, M.-R.; Walker, D.; Retuerto, M.; Sarkar, T.; Hadermann, J.;
- Stephens, P. W.; Croft, M.; Ignatov, A.; Grams, C. P.; Hemberger, J.;

Nowik, I.; Halasyamani, P. S.; Tran, T. T.; Mukherjee, S.; Dasgupta, T.

S.; Greenblatt, M. Angew. Chem., Int. Ed. 2013, 52, 8406.

- (20) Shannon, R. D. Inorg. Chem. 1967, 6, 1474.
- (21) Park, J. H.; Parise, J. B. Mater. Res. Bull. 1997, 32, 1617.

(22) Alonso, J. A.; Mzayek, E.; Rasines, I. J. Solid State Chem. 1990, 84, 16.

(23) (a) Wold, A.; Post, B.; Banks, E. J. Am. Chem. Soc. 1957, 79,

6365. (b) Wold, A.; Arnott, R. J.; Croft, W. J. Inorg. Chem. 1963, 2, 972.

(24) Chazalon, R.; Bertaut, E. F.; Duc, T. Q. Bull. Soc. Fr. Mineral. Cristallogr. 1964, 87, 98.

(25) Shannon, R. D. Acta Crystallogr., Sect. B 1970, 26, 447.

(26) Lazarev, V. B.; Shaplygin, I. S. Russ. J. Inorg. Chem. 1978, 23, 1449; Zh. Neorg. Khim. 1978, 23, 2614.

(27) Shaplygin, I. S.; Lazarev, V. B. Russ. J. Inorg. Chem. 1978, 23, 626; Zh. Neorg. Khim. 1978, 23, 1131.

(28) Kochergina, L. L.; Fomichev, V. V.; Kondratov, O. I.; Shaplygin, I. S.; Petrov, K. I. Russ. J. Inorg. Chem. 1980, 25, 1153; Zh. Neorg. Khim. 1980, 25, 2082.

(29) Jarrett, H. S.; Sleight, A. W.; Kung, H. H.; Gillson, J. L. J. Appl. Phys. 1980, 51, 3916.

(30) Taniguchi, T.; Iizuka, W.; Nagata, Y.; Uchida, T.; Samata, H. J. Alloys Compd. 2003, 350, 24.

- (31) Macquart, R. B.; Smith, M. D.; zur Loye, H. C. Cryst. Growth Des. 2006, 6, 1361.
- (32) Longo, J. M.; Raccah, P. M.; Kafalas, J. A.; Pierce, J. W. Mater. Res. Bull. 1972, 7, 137.
- (33) Yi, W.; Liang, Q. F.; Matsushita, Y.; Tanaka, M.; Hu, X.; Belik, A. A. J. Solid State Chem. 2013, 200, 271.
- (34) Tanaka, M.; Katsuya, Y.; Yamamoto, A. Rev. Sci. Instrum. 2008, 79, 075106.
- (35) Izumi, F.; Ikeda, T. Mater. Sci. Forum 2000, 321−324, 198.
- (36) Bain, G. A.; Berry, J. F. J. Chem. Educ. 2008, 85, 532.
- (37) Werner, P. E.; Eriksson, L.; Westdahl, M. J. Appl. Crystallogr. 1985, 18, 367.

(38) International Tables for Crystallography, 5th ed.; Hahn, T., Ed.; Kluwer: Dordrecht, The Netherlands, 2002; Vol. A, p 52.

(39) Mandal, T. P.; Poltavets, V. V.; Croft, M.; Greenblatt, M. J. Solid State Chem. 2008, 181, 2325.

(40) Altomare, A.; Burla, M. C.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.;

Polidori, G.; Rizzi, R. J. Appl. Crystallogr. 1999, 32, 339. (41) Brese, N. E.; O'Keeffe, M. Acta Crystallogr., Sec. B 1991, 47, 192.

(42) Oak, M. A.; Lee, J. H.; Jang, H. M.; Goh, J. S; Choi, H. J.; Scott, J. F. Phys. Rev. Lett. 2011, 106, 047601.

(43) Kumagai, Y.; Belik, A. A.; Lilienblum, M.; Leo, N.; Fiebig, M.; Spaldin, N. A. Phys. Rev. B 2012, 85, 174422.

(44) Pissas, M.; Kallias, G.; Hofmann, M.; Toebbens, D. M. Phys. Rev. B 2002, 65, 064413.

(45) Blasco, J.; Ritter, C.; Garcia, J.; de Teresa, J. M.; Perez-Cacho, J.; Ibarra, M. R. Phys. Rev. B 2000, 62, 5609.

(46) Millange, F.; Caignaert, V.; Mather, G.; Suard, E.; Raveau, B. J. Solid State Chem. 1996, 127, 131.

(47) Richard, O.; Schuddinck, W.; Van Tendeloo, G.; Millange, F.; Hervieu, M.; Caignaert, V.; Raveau, B. Acta Crystallogr., Sect. A 1999, 55, 704.

(48) Miclau, M.; Hejtmanek, J.; Retoux, R.; Knizek, K.; Jirak, Z.; Fresard, R.; Maignan, A.; Hebert, S.; Hervieu, M.; Martin, C. Chem. Mater. 2007, 19, 4243.

(49) King, G.; Thimmaiah, S.; Dwivedi, A.; Woodward, P. M. Chem. Mater. 2007, 19, 6451.

- (50) King, G.; Woodward, P. M. J. Mater. Chem. 2010, 20, 5785.
- (51) Howard, C. J.; Stokes, H. T. Acta Crystallogr. Sect., B 1998, 54, 782.
- (52) Glazer, A. M. Acta Crystallogr., Sect. B 1972, 28, 3384.

(53) Kennedy, B. J.; Hovard, C. J.; Chakoumakos, B. C. J. Phys.: Condens. Matter 1999, 11, 1479.

(54) Abrashev, M. V.; Backstrom, J.; Borjesson, L.; Popov, V. N.; Chakalov, R. A.; Kolev, N.; Meng, R. -L.; Iliev, M. N. Phys. Rev. B 2002, 65, 184301.

(55) O'Keeffe, M.; Hyde, B. Acta Crystallogr., Sect. B 1977, 33, 3802.

(56) Yi, W.; Matsushita, Y.; Tanaka, M.; Belik, A. A. Inorg. Chem. 2012, 51, 7650.

(57) Inoue, I. H.; Goto, O.; Makino, H.; Hussey, N. E.; Ishikawa, M. Phys. Rev. B 1998, 58, 4372.